Introduction to Programming: Lecture 18

K Narayan Kumar

Chennai Mathematical Institute

http://www.cmi.ac.in/~kumar

17 Oct 2013


http://www.cmi.ac.in/~kumar

Compiling into executables

» So far,

» All inputs were supplied as arguments to functions from ghci
» Outputs were printed out by ghci



Compiling into executables

» So far,

» All inputs were supplied as arguments to functions from ghci
» Outputs were printed out by ghci

» Works as long as programs are run from within an interpreter.



Compiling into executables

» So far,

» All inputs were supplied as arguments to functions from ghci
» Outputs were printed out by ghci

» Works as long as programs are run from within an interpreter.

» What if we want to compile programs into executables?



Compiling into executables

» So far,

» All inputs were supplied as arguments to functions from ghci
» Outputs were printed out by ghci

» Works as long as programs are run from within an interpreter.
» What if we want to compile programs into executables?

» The Haskell programs described so far cannot be compiled
into executables.



Compiling into executables

» So far,

» All inputs were supplied as arguments to functions from ghci
» Outputs were printed out by ghci

» Works as long as programs are run from within an interpreter.
» What if we want to compile programs into executables?

» The Haskell programs described so far cannot be compiled
into executables.

» For eg. they don't specify what function has to be computed.



Compiling ...

» Consider the Haskell program

main = putStrLln ("My First Compilable Program")



Compiling ...

» Consider the Haskell program

main = putStrLln ("My First Compilable Program")
» Compile the program using ghc

ghc —make Out.hs



Compiling ...

» Consider the Haskell program

main = putStrLln ("My First Compilable Program")
» Compile the program using ghc

ghc —make Out.hs

» Computes all the module dependencies and compiles all the
modules.



Compiling ...

» Consider the Haskell program

main = putStrLln ("My First Compilable Program")
» Compile the program using ghc

ghc —make Out.hs

» Computes all the module dependencies and compiles all the
modules.

» Run by executing the program Out



Compiling ...

» Consider the Haskell program

main = putStrLln ("My First Compilable Program")
» Compile the program using ghc

ghc —make Out.hs

» Computes all the module dependencies and compiles all the
modules.

» Run by executing the program Out

» How do we give inputs to a Haskell program that is compiled
and executed?



Input/Output in Haskell

> Here is a simple program that does both input and output.
main = do
putStrLn ("Please enter your name:")
name <- getLine
putStrLn ("Hello " ++ name)



Input/Output in Haskell

> Here is a simple program that does both input and output.
main = do
putStrln ("Please enter your name:")
name <- getLine
putStrLn ("Hello " ++ name)

» main is the name of the action that is executed when a
compiled Haskell program is run.



Input/Output in Haskell

> Here is a simple program that does both input and output.
main = do
putStrln ("Please enter your name:")
name <- getLine
putStrLn ("Hello " ++ name)

» main is the name of the action that is executed when a
compiled Haskell program is run.

» main, putStrln s, getLine are all actions.



Input/Output in Haskell

» Here is a simple program that does both input and output.
main = do
putStrln ("Please enter your name:")
name <- getLine
putStrLn ("Hello " ++ name)
» main is the name of the action that is executed when a
compiled Haskell program is run.

» main, putStrln s, getLine are all actions.

» The do command puts together a sequence of actions into a
larger action.



Input/Output in Haskell

> Here is a simple program that does both input and output.
main = do
putStrln ("Please enter your name:")
name <- getLine
putStrLn ("Hello " ++ name)

» main is the name of the action that is executed when a
compiled Haskell program is run.

» main, putStrln s, getLine are all actions.

» The do command puts together a sequence of actions into a
larger action.

» These actions are executed sequentially, that is, one after the
other.



The type of Actions

» What is the type of main in this example?



The type of Actions

» What is the type of main in this example?
main : I0 O



The type of Actions

» What is the type of main in this example?
main : I0 ()
» The type () is the type with a single value, also denoted ().



The type of Actions

» What is the type of main in this example?

main : I0 ()
» The type () is the type with a single value, also denoted ().
» What are the types of putStrLn and getLine ?



The type of Actions

» What is the type of main in this example?

main : I0 O
» The type () is the type with a single value, also denoted ().
» What are the types of putStrLn and getLine ?

putStrln :: String -> I0 O

getLine :: I0 String



The type of Actions

» What is the type of main in this example?

main : I0 O
» The type () is the type with a single value, also denoted ().
» What are the types of putStrLn and getLine ?

putStrln :: String -> I0 O

getLine :: I0 String

» The qualifier I0 in all these types indicate that the function
also performs some Input/Output.



The type of Actions

» What is the type of main in this example?

main : I0 O
» The type () is the type with a single value, also denoted ().
» What are the types of putStrLn and getLine ?

putStrln :: String -> I0 O

getLine :: I0 String

» The qualifier I0 in all these types indicate that the function
also performs some Input/Output.

> The type of a do .. statement is the type of the last action.

The type of an action v <- e is the type of e.



Actions

» An action is an expression of type I0 a for some a.

main, putStrLn s and getLine are all actions.



Actions

» An action is an expression of type I0 a for some a.
main, putStrLn s and getLine are all actions.

» In Haskell, any Input/Output must occur within expressions of
type I0 a for some a.



Actions

» An action is an expression of type I0 a for some a.
main, putStrLn s and getLine are all actions.

» In Haskell, any Input/Output must occur within expressions of
type I0 a for some a.

» Actions are first class values and for most part can be used
like other normal values.

alist = map putStrLn ["one","two","three"]
¢ = head alist



Actions

» An action is an expression of type I0 a for some a.
main, putStrLn s and getLine are all actions.

» In Haskell, any Input/Output must occur within expressions of
type I0 a for some a.

» Actions are first class values and for most part can be used
like other normal values.

alist = map putStrLn ["one","two","three"]
¢ = head alist

> As expected, we have
alist :: [I0 O]



Actions

» An action is an expression of type I0 a for some a.
main, putStrLn s and getLine are all actions.

» In Haskell, any Input/Output must occur within expressions of
type I0 a for some a.

» Actions are first class values and for most part can be used
like other normal values.

alist = map putStrLn ["one","two","three"]
¢ = head alist

> As expected, we have
alist :: [I0 O]
c:: I0 O



/0 ..

» A function with an integer for an argument and returning an
integer has type
Int -> Int

while one that also does some 10 has type
(Int -> I0 Int)



/0 ..

» A function with an integer for an argument and returning an
integer has type
Int -> Int
while one that also does some 10 has type
(Int -> I0 Int)
What is the need for such a distinction?



/0 ..

» A function with an integer for an argument and returning an
integer has type
Int -> Int
while one that also does some 10 has type
(Int -> I0 Int)
What is the need for such a distinction?

» The kind of Haskell functions we have so far seen in this
course are called pure functions.



/0 ..

» A function with an integer for an argument and returning an
integer has type
Int -> Int
while one that also does some 10 has type
(Int -> I0 Int)
What is the need for such a distinction?

» The kind of Haskell functions we have so far seen in this
course are called pure functions.
Their type gives all the information we need about them.



/0 ..

» A function with an integer for an argument and returning an
integer has type
Int -> Int
while one that also does some 10 has type
(Int -> I0 Int)
What is the need for such a distinction?

» The kind of Haskell functions we have so far seen in this
course are called pure functions.
Their type gives all the information we need about them.

» For functions that also do O, the types of the arguments and
the return value by themselves do not reveal everything.



/0 ..

» A function with an integer for an argument and returning an
integer has type
Int -> Int
while one that also does some 10 has type
(Int -> I0 Int)
What is the need for such a distinction?

» The kind of Haskell functions we have so far seen in this
course are called pure functions.
Their type gives all the information we need about them.

» For functions that also do O, the types of the arguments and
the return value by themselves do not reveal everything.
» Input/Output involves changing the outside world.
state change
» 1/O Actions have to be composed sequentially, that is, the
order of execution is critical.



/0 ..

» A function with an integer for an argument and returning an
integer has type
Int -> Int
while one that also does some 10 has type
(Int -> I0 Int)
What is the need for such a distinction?

» The kind of Haskell functions we have so far seen in this
course are called pure functions.
Their type gives all the information we need about them.

» For functions that also do O, the types of the arguments and
the return value by themselves do not reveal everything.

» Input/Output involves changing the outside world.
state change

» 1/O Actions have to be composed sequentially, that is, the
order of execution is critical.
(eg.) Reading in different orders will result in different
behaviours.



Combining Pure and 10 functions

> Haskell type system allows us use pure and action parts in a
safe manner.



Combining Pure and 10 functions

> Haskell type system allows us use pure and action parts in a
safe manner.

» There is no mechanism to execute an action from within a
pure function.



Combining Pure and 10 functions

> Haskell type system allows us use pure and action parts in a
safe manner.

» There is no mechanism to execute an action from within a
pure function.

» 1/0 is performed by an action only if it that action is
performed, i.e. executed from within another action.



Combining Pure and 10 functions

> Haskell type system allows us use pure and action parts in a
safe manner.

» There is no mechanism to execute an action from within a
pure function.

» 1/0 is performed by an action only if it that action is
performed, i.e. executed from within another action.

The main action is where all the action begins!



|/O Examples ...

» Read a line and print it out twice



|/O Examples ...

» Read a line and print it out twice
main = do
inp <- getLine
putStrln inp;
putStrln inp;



|/O Examples ...

» Read a line and print it out twice
main = do

inp <- getLine
putStrln inp;
putStrln inp;

» Read a line and print it out as many times as its length



|/O Examples ...

» Read a line and print it out twice
main = do
inp <- getLine
putStrln inp;
putStrln inp;

» Read a line and print it out as many times as its length
main = do
inp <- getLine
ltimes (length inp) inp

ltimes :: Int -> String -> I0 (O
ltimes 1 1 = putStrln 1
1l = do
putStrln 1
ltimes (n-1) 1

1
ltimes n



Example ...

» Read a line w. Read and output as many lines as length of w.



Example ...

» Read a line w. Read and output as many lines as length of w.
main = do
linp <- getLine
ltimesrw (length linp)

ltimesrw :: Int -> I0 ()
do
inp <- getLine
putStrLn inp
do
inp <- getLine
putStrLn inp
ltimesrw (n-1)

ltimesrw 1

ltimesrw n



Example ...

» Read a line w. Read and output as many lines as length of w.
main = do
linp <- getLine
ltimesrw (length linp)

ltimesrw :: Int -> I0 O
ltimesrw 1 = do
inp <- getLine
putStrLn inp
ltimesrw n = do
inp <- getLine
putStrLn inp
ltimesrw (n-1)
» Suggests that we should write a function to do an action n
times.



> Repeat an action n times.

ntimes Int -> I0 O -> I0 O
ntimes 1 s = s

ntimes n s = do
s

ntimes (n-1) s

«O>r «Fr <

it
v
a
it
v

it
)
¥l
i)



ntimes

» Repeat an action n times.
ntimes :: Int -> I0 () -> I0 ()
ntimes 1 s = s
ntimes n s = do
s
ntimes (n-1) s
» Then we can write
actionl = do
inp <- getline
ntimes (length inp)
(putStrLn inp)




ntimes

» Repeat an action n times.
ntimes :: Int -> I0 () —> I0 QO
ntimes 1 s = s
ntimes n s = do
s
ntimes (n-1) s
> Then we can write
actionl = do
inp <- getline
ntimes (length inp)
(putStrLn inp)
» and
action2 = do
linp <- getLine
ntimes (length linp)
(do
inp <- getLine
putStrLn inp)

u]
o)
I
i
it




Reading other types

» The function readLn reads a value of any type a that is an
instance of Read a

readln :: (Read a) => 10 a



Reading other types

» The function readLn reads a value of any type a that is an
instance of Read a
readln :: (Read a) => I0 a

» All basic types (Int, Float, Bool, ...) are instances of
Read.



Reading other types

» The function readLn reads a value of any type a that is an
instance of Read a

readln :: (Read a) => I0 a
» All basic types (Int, Float, Bool, ...) are instances of
Read.

main = do
inp <- (readLn :: IO Bool)
putStrLn (show inp)



Reading other types

» The function readLn reads a value of any type a that is an
instance of Read a

readln :: (Read a) => 10 a
» All basic types (Int, Float, Bool, ...) are instances of
Read.

main = do
inp <- (readLn :: IO Bool)
putStrLn (show inp)
» readln reads a value of the appropriate type appearing by
itself in a line.



Reading other types

» The function readLn reads a value of any type a that is an
instance of Read a

readln :: (Read a) => I0 a
» All basic types (Int, Float, Bool, ...) are instances of
Read.

main = do
inp <- (readLn :: IO Bool)
putStrLn (show inp)
» readln reads a value of the appropriate type appearing by
itself in a line.
main = do
inp <- (readln :: I0 Float)
putStrLn (show (inp*inp))



IO Examples

> Read a list of positive integers, terminated by a -1, into a
list and print the sum.



IO Examples

> Read a list of positive integers, terminated by a -1, into a
list and print the sum.
main = do
1ls <- (readlist [])
putStrLn (sum 1s)



IO Examples

> Read a list of positive integers, terminated by a -1, into a
list and print the sum.
main = do
1ls <- (readlist [])
putStrLn (sum 1s)
readlist :: [Int] -> I0 [Int]
readlist 1 = do
inp <- (readln :: I0 Int)
if (inp == -1)
then 1
else readlist (inp:1)



IO Examples

> Read a list of positive integers, terminated by a -1, into a
list and print the sum.
main = do
1ls <- (readlist [])
putStrLn (sum 1s)

readlist :: [Int] -> I0 [Int]
readlist 1 = do
inp <- (readln :: I0 Int)
if (inp == -1)
then 1
else readlist (inp:1)

» This is not typed correctly. 1 has type [Int] and not I0
[Int].



readlist ::
readlist 1 = do

[Int] -> I0 [Int]

inp <- (readLn I0 Int)
if (inp == -1)
then (return 1)

else readlist (inp:1)

«O>r «Fr «=>»

«E)»

DA



Example ...

readlist :: [Int] -> I0 [Int]
readlist 1 = do
inp <- (readLn :: IO Int)
if (inp == -1)
then (return 1)
else readlist (inp:1)

» The function return sends value of type a to a value of type
I0 a



Example ...

readlist :: [Int] -> I0 [Int]
readlist 1 = do
inp <- (readLn :: IO Int)
if (inp == -1)
then (return 1)
else readlist (inp:1)

» The function return sends value of type a to a value of type
I0 a

> Note that there is no obvious way to construct a useful
function of type I0 a -> b where b is not an action.



Example ...

readlist :: [Int] -> I0 [Int]
readlist 1 = do
inp <- (readlLn :: I0 Int)
if (inp == -1)
then (return 1)
else readlist (inp:1)

» The function return sends value of type a to a value of type
I0 a

» Note that there is no obvious way to construct a useful
function of type I0 a -> b where b is not an action.

This is towards a clean separation of the pure fragments of
the program (that do no 1/0) and the 10 parts.



